Low Reynolds Number Flow Through Nozzle-Diffuser Elements in Valveless Micropumps
نویسندگان
چکیده
Flow characteristics of low Reynolds number laminar flow through gradually expanding conical and planar diffusers were investigated. Such diffusers are used in valveless micropumps to effect flow rectification and thus lead to pumping action in one preferential direction. Four different types of diffuser flows are considered: fully developed and thin inlet boundary layer flows through conical and planar diffusers. The results from the numerical analysis have been quantified in terms of pressure loss coefficient. The variation of pressure loss coefficient with diffuser angle is presented for Reynolds numbers of 200, 500 and 1000. The pressure loss coefficients have been used to calculate the diffuser efficiency for two different types of nozzle-diffuser elements. The general trend of variation of pressure loss coefficient with diffuser angle was found to be similar to that for high Reynolds number turbulent flow. However, unlike at high Reynolds numbers, pressure loss coefficients at low Reynolds numbers vary significantly with Reynolds number. It was also observed that trends of variation in the pressure loss coefficient with Reynolds number are different for small and large diffuser angles. Also, at low Reynolds numbers, the pressure loss coefficients for a thin inlet boundary layer are not always smaller than those for fully developed inlet boundary layer, in contrast to the behavior for high Reynolds number flows. Contrary to past claims, flow rectification is shown to be indeed possible for laminar flows. The two different types of nozzle-diffuser elements considered led to pumping action in opposite directions. Further it was observed that flow rectification properties of both kinds of nozzle-diffuser elements improved with increasing Reynolds number.
منابع مشابه
Design and Fabrication of MEMS Micropumps using Double Sided Etching
In this paper, we report a simple technique for the fabrication of planar valveless micropumps. The technique utilizes MEMS fabrication methods by using a double sided etch technique. Instead of using several masks and process steps, an anisotropic wet etch technique at both sides of a silicon substrate is implemented at the same time for creating the pump membrane and the diffuser/ nozzle elem...
متن کاملNeuro-Genetic Optimization of the Diffuser Elements for Applications in a Valveless Diaphragm Micropumps System
In this study, a hybridized neuro-genetic optimization methodology realized by embedding numerical simulations trained artificial neural networks (ANN) into a genetic algorithm (GA) is used to optimize the flow rectification efficiency of the diffuser element for a valveless diaphragm micropump application. A higher efficiency ratio of the diffuser element consequently yields a higher flow rate...
متن کاملInvestigation of Simple Process Technology for the Fabrication of Valveless Micropumps
This paper presents a simple process technique for the fabrication of valveless micropumps. The process design utilizes standard MEMS process using double-sided anisotropic silicon wet etching process with an additional adhesive bonding technique. The diffuser and nozzle element of the pump with depth of 50 μm, as well as a 150 μm thick silicon membrane are designed and fabricated using only 3 ...
متن کاملDesign and Simulation of Valve Less PZT Micropump for Drug Delivery System
In this paper some discrete parts of an electrostatic and flat-walled self-aligned valveless, micropump for drug delivery system is designed and simulated. The core component of the system is a piezoelectric diaphragm that can convert the reciprocating movement of a diaphragm actuated by a piezoelectric actuator into a pumping effect. The deflection in the diaphragm was analyzed by applying the...
متن کاملA comparative study of nozzle/diffuser micropumps with novel valves.
This study conducts an experimental study concerning the improvement of nozzle/diffuser micropump design using some novel no-moving-part valves. A total of three micropumps, including two enhancement structures having two-fin or obstacle structure and one conventional micro nozzle/diffuser design, are made and tested in this study. It is found that dramatic increase of the pressure drops across...
متن کامل